/* CTRC functionality */ /* Author: Rudolf Cornelissen 11/2002-5/2004 */ #define MODULE_BIT 0x00040000 #include "nv_std.h" /*Adjust passed parameters to a valid mode line*/ status_t nv_crtc_validate_timing( uint16 *hd_e,uint16 *hs_s,uint16 *hs_e,uint16 *ht, uint16 *vd_e,uint16 *vs_s,uint16 *vs_e,uint16 *vt ) { /* horizontal */ /* make all parameters multiples of 8 */ *hd_e &= 0xfff8; *hs_s &= 0xfff8; *hs_e &= 0xfff8; *ht &= 0xfff8; /* confine to required number of bits, taking logic into account */ if (*hd_e > ((0x01ff - 2) << 3)) *hd_e = ((0x01ff - 2) << 3); if (*hs_s > ((0x01ff - 1) << 3)) *hs_s = ((0x01ff - 1) << 3); if (*hs_e > ( 0x01ff << 3)) *hs_e = ( 0x01ff << 3); if (*ht > ((0x01ff + 5) << 3)) *ht = ((0x01ff + 5) << 3); /* NOTE: keep horizontal timing at multiples of 8! */ /* confine to a reasonable width */ if (*hd_e < 640) *hd_e = 640; if (si->ps.card_type > NV04) { if (*hd_e > 2048) *hd_e = 2048; } else { if (*hd_e > 1920) *hd_e = 1920; } /* if hor. total does not leave room for a sensible sync pulse, increase it! */ if (*ht < (*hd_e + 80)) *ht = (*hd_e + 80); /* make sure sync pulse is not during display */ if (*hs_e > (*ht - 8)) *hs_e = (*ht - 8); if (*hs_s < (*hd_e + 8)) *hs_s = (*hd_e + 8); /* correct sync pulse if it is too long: * there are only 5 bits available to save this in the card registers! */ if (*hs_e > (*hs_s + 0xf8)) *hs_e = (*hs_s + 0xf8); /*vertical*/ /* confine to required number of bits, taking logic into account */ //fixme if needed: on GeForce cards there are 12 instead of 11 bits... if (*vd_e > (0x7ff - 2)) *vd_e = (0x7ff - 2); if (*vs_s > (0x7ff - 1)) *vs_s = (0x7ff - 1); if (*vs_e > 0x7ff ) *vs_e = 0x7ff ; if (*vt > (0x7ff + 2)) *vt = (0x7ff + 2); /* confine to a reasonable height */ if (*vd_e < 480) *vd_e = 480; if (si->ps.card_type > NV04) { if (*vd_e > 1536) *vd_e = 1536; } else { if (*vd_e > 1440) *vd_e = 1440; } /*if vertical total does not leave room for a sync pulse, increase it!*/ if (*vt < (*vd_e + 3)) *vt = (*vd_e + 3); /* make sure sync pulse is not during display */ if (*vs_e > (*vt - 1)) *vs_e = (*vt - 1); if (*vs_s < (*vd_e + 1)) *vs_s = (*vd_e + 1); /* correct sync pulse if it is too long: * there are only 4 bits available to save this in the card registers! */ if (*vs_e > (*vs_s + 0x0f)) *vs_e = (*vs_s + 0x0f); return B_OK; } /*set a mode line - inputs are in pixels*/ status_t nv_crtc_set_timing(display_mode target) { uint8 temp; uint32 htotal; /*total horizontal total VCLKs*/ uint32 hdisp_e; /*end of horizontal display (begins at 0)*/ uint32 hsync_s; /*begin of horizontal sync pulse*/ uint32 hsync_e; /*end of horizontal sync pulse*/ uint32 hblnk_s; /*begin horizontal blanking*/ uint32 hblnk_e; /*end horizontal blanking*/ uint32 vtotal; /*total vertical total scanlines*/ uint32 vdisp_e; /*end of vertical display*/ uint32 vsync_s; /*begin of vertical sync pulse*/ uint32 vsync_e; /*end of vertical sync pulse*/ uint32 vblnk_s; /*begin vertical blanking*/ uint32 vblnk_e; /*end vertical blanking*/ uint32 linecomp; /*split screen and vdisp_e interrupt*/ LOG(4,("CRTC: setting timing\n")); /* setup tuned internal modeline for flatpanel if connected and active */ if (si->ps.tmds1_active) { LOG(2,("CRTC: DFP active: tuning modeline\n")); /* horizontal timing */ //testing (640x480): total = 135% is too much, 120% to small... //total = display + 160 equals panel modeline: but must be smaller...? // target.timing.h_total = target.timing.h_display + 152;//160;//128 // target.timing.h_sync_start = target.timing.h_total - 136;//144;//112 // target.timing.h_sync_end = target.timing.h_total - 40;//48;//16 //adaptive to panel: fixme: test on 4:3 and 16:10 panels! target.timing.h_sync_start = ((uint16)((si->ps.p1_timing.h_sync_start / ((float)si->ps.p1_timing.h_display)) * target.timing.h_display)) & 0xfff8; target.timing.h_sync_end = ((uint16)((si->ps.p1_timing.h_sync_end / ((float)si->ps.p1_timing.h_display)) * target.timing.h_display)) & 0xfff8; target.timing.h_total = (((uint16)((si->ps.p1_timing.h_total / ((float)si->ps.p1_timing.h_display)) * target.timing.h_display)) & 0xfff8) - 8; if (target.timing.h_sync_start == target.timing.h_display) target.timing.h_sync_start += 8; if (target.timing.h_sync_end == target.timing.h_total) target.timing.h_sync_end -= 8; /* vertical timing */ // target.timing.v_total = target.timing.v_display + 6; // target.timing.v_sync_start = target.timing.v_total - 3; // target.timing.v_sync_end = target.timing.v_total - 2; target.timing.v_sync_start = ((uint16)((si->ps.p1_timing.v_sync_start / ((float)si->ps.p1_timing.v_display)) * target.timing.v_display)); target.timing.v_sync_end = ((uint16)((si->ps.p1_timing.v_sync_end / ((float)si->ps.p1_timing.v_display)) * target.timing.v_display)); target.timing.v_total = ((uint16)((si->ps.p1_timing.v_total / ((float)si->ps.p1_timing.v_display)) * target.timing.v_display)) - 1; if (target.timing.v_sync_start == target.timing.v_display) target.timing.v_sync_start += 1; if (target.timing.v_sync_end == target.timing.v_total) target.timing.v_sync_end -= 1; /* disable GPU scaling testmode so automatic scaling will be done */ DACW(FP_DEBUG1, 0); } /* Modify parameters as required by standard VGA */ htotal = ((target.timing.h_total >> 3) - 5); hdisp_e = ((target.timing.h_display >> 3) - 1); hblnk_s = hdisp_e; hblnk_e = (htotal + 4);//0; hsync_s = (target.timing.h_sync_start >> 3); hsync_e = (target.timing.h_sync_end >> 3); vtotal = target.timing.v_total - 2; vdisp_e = target.timing.v_display - 1; vblnk_s = vdisp_e; vblnk_e = (vtotal + 1); vsync_s = target.timing.v_sync_start;//-1; vsync_e = target.timing.v_sync_end;//-1; /* prevent memory adress counter from being reset (linecomp may not occur) */ linecomp = target.timing.v_display; /* enable access to primary head */ set_crtc_owner(0); /* Note for laptop and DVI flatpanels: * CRTC timing has a seperate set of registers from flatpanel timing. * The flatpanel timing registers have scaling registers that are used to match * these two modelines. */ { LOG(4,("CRTC: Setting full timing...\n")); /* log the mode that will be set */ LOG(2,("CRTC:\n\tHTOT:%x\n\tHDISPEND:%x\n\tHBLNKS:%x\n\tHBLNKE:%x\n\tHSYNCS:%x\n\tHSYNCE:%x\n\t",htotal,hdisp_e,hblnk_s,hblnk_e,hsync_s,hsync_e)); LOG(2,("VTOT:%x\n\tVDISPEND:%x\n\tVBLNKS:%x\n\tVBLNKE:%x\n\tVSYNCS:%x\n\tVSYNCE:%x\n",vtotal,vdisp_e,vblnk_s,vblnk_e,vsync_s,vsync_e)); /* actually program the card! */ /* unlock CRTC registers at index 0-7 */ CRTCW(VSYNCE, (CRTCR(VSYNCE) & 0x7f)); /* horizontal standard VGA regs */ CRTCW(HTOTAL, (htotal & 0xff)); CRTCW(HDISPE, (hdisp_e & 0xff)); CRTCW(HBLANKS, (hblnk_s & 0xff)); /* also unlock vertical retrace registers in advance */ CRTCW(HBLANKE, ((hblnk_e & 0x1f) | 0x80)); CRTCW(HSYNCS, (hsync_s & 0xff)); CRTCW(HSYNCE, ((hsync_e & 0x1f) | ((hblnk_e & 0x20) << 2))); /* vertical standard VGA regs */ CRTCW(VTOTAL, (vtotal & 0xff)); CRTCW(OVERFLOW, ( ((vtotal & 0x100) >> (8 - 0)) | ((vtotal & 0x200) >> (9 - 5)) | ((vdisp_e & 0x100) >> (8 - 1)) | ((vdisp_e & 0x200) >> (9 - 6)) | ((vsync_s & 0x100) >> (8 - 2)) | ((vsync_s & 0x200) >> (9 - 7)) | ((vblnk_s & 0x100) >> (8 - 3)) | ((linecomp & 0x100) >> (8 - 4)) )); CRTCW(PRROWSCN, 0x00); /* not used */ CRTCW(MAXSCLIN, (((vblnk_s & 0x200) >> (9 - 5)) | ((linecomp & 0x200) >> (9 - 6)))); CRTCW(VSYNCS, (vsync_s & 0xff)); CRTCW(VSYNCE, ((CRTCR(VSYNCE) & 0xf0) | (vsync_e & 0x0f))); CRTCW(VDISPE, (vdisp_e & 0xff)); CRTCW(VBLANKS, (vblnk_s & 0xff)); CRTCW(VBLANKE, (vblnk_e & 0xff)); CRTCW(LINECOMP, (linecomp & 0xff)); /* horizontal extended regs */ //fixme: we reset bit4. is this correct?? CRTCW(HEB, (CRTCR(HEB) & 0xe0) | ( ((htotal & 0x100) >> (8 - 0)) | ((hdisp_e & 0x100) >> (8 - 1)) | ((hblnk_s & 0x100) >> (8 - 2)) | ((hsync_s & 0x100) >> (8 - 3)) )); /* (mostly) vertical extended regs */ CRTCW(LSR, ( ((vtotal & 0x400) >> (10 - 0)) | ((vdisp_e & 0x400) >> (10 - 1)) | ((vsync_s & 0x400) >> (10 - 2)) | ((vblnk_s & 0x400) >> (10 - 3)) | ((hblnk_e & 0x040) >> (6 - 4)) //fixme: we still miss one linecomp bit!?! is this it?? //| ((linecomp & 0x400) >> 3) )); /* more vertical extended regs (on GeForce cards only) */ if (si->ps.card_arch >= NV10A) { CRTCW(EXTRA, ( ((vtotal & 0x800) >> (11 - 0)) | ((vdisp_e & 0x800) >> (11 - 2)) | ((vsync_s & 0x800) >> (11 - 4)) | ((vblnk_s & 0x800) >> (11 - 6)) //fixme: do we miss another linecomp bit!?! )); } /* setup 'large screen' mode */ if (target.timing.h_display >= 1280) CRTCW(REPAINT1, (CRTCR(REPAINT1) & 0xfb)); else CRTCW(REPAINT1, (CRTCR(REPAINT1) | 0x04)); /* setup HSYNC & VSYNC polarity */ LOG(2,("CRTC: sync polarity: ")); temp = NV_REG8(NV8_MISCR); if (target.timing.flags & B_POSITIVE_HSYNC) { LOG(2,("H:pos ")); temp &= ~0x40; } else { LOG(2,("H:neg ")); temp |= 0x40; } if (target.timing.flags & B_POSITIVE_VSYNC) { LOG(2,("V:pos ")); temp &= ~0x80; } else { LOG(2,("V:neg ")); temp |= 0x80; } NV_REG8(NV8_MISCW) = temp; LOG(2,(", MISC reg readback: $%02x\n", NV_REG8(NV8_MISCR))); } /* always disable interlaced operation */ /* (interlace is supported on upto and including NV10, NV15, and NV30 and up) */ CRTCW(INTERLACE, 0xff); /* setup flatpanel if connected and active */ if (si->ps.tmds1_active) { uint32 iscale_x, iscale_y; /* calculate inverse scaling factors used by hardware in 20.12 format */ iscale_x = (((1 << 12) * target.timing.h_display) / si->ps.p1_timing.h_display); iscale_y = (((1 << 12) * target.timing.v_display) / si->ps.p1_timing.v_display); /* unblock flatpanel timing programming (or something like that..) */ CRTCW(FP_HTIMING, 0); CRTCW(FP_VTIMING, 0); LOG(2,("CRTC: FP_HTIMING reg readback: $%02x\n", CRTCR(FP_HTIMING))); LOG(2,("CRTC: FP_VTIMING reg readback: $%02x\n", CRTCR(FP_VTIMING))); /* enable full width visibility on flatpanel */ DACW(FP_HVALID_S, 0); DACW(FP_HVALID_E, (si->ps.p1_timing.h_display - 1)); /* enable full height visibility on flatpanel */ DACW(FP_VVALID_S, 0); DACW(FP_VVALID_E, (si->ps.p1_timing.v_display - 1)); /* nVidia cards support upscaling except on ??? */ /* NV11 cards can upscale after all! */ if (0)//si->ps.card_type == NV11) { /* disable last fetched line limiting */ DACW(FP_DEBUG2, 0x00000000); /* inform panel to scale if needed */ if ((iscale_x != (1 << 12)) || (iscale_y != (1 << 12))) { LOG(2,("CRTC: DFP needs to do scaling\n")); DACW(FP_TG_CTRL, (DACR(FP_TG_CTRL) | 0x00000100)); } else { LOG(2,("CRTC: no scaling for DFP needed\n")); DACW(FP_TG_CTRL, (DACR(FP_TG_CTRL) & 0xfffffeff)); } } else { float dm_aspect; LOG(2,("CRTC: GPU scales for DFP if needed\n")); /* calculate display mode aspect */ dm_aspect = (target.timing.h_display / ((float)target.timing.v_display)); /* limit last fetched line if vertical scaling is done */ if (iscale_y != (1 << 12)) DACW(FP_DEBUG2, ((1 << 28) | ((target.timing.v_display - 1) << 16))); else DACW(FP_DEBUG2, 0x00000000); /* inform panel not to scale */ DACW(FP_TG_CTRL, (DACR(FP_TG_CTRL) & 0xfffffeff)); /* GPU scaling is automatically setup by hardware, so only modify this * scalingfactor for non 4:3 (1.33) aspect panels; * let's consider 1280x1024 1:33 aspect (it's 1.25 aspect actually!) */ /* correct for widescreen panels relative to mode... * (so if panel is more widescreen than mode being set) */ /* BTW: known widescreen panels: * 1280 x 800 (1.60), * 1440 x 900 (1.60), * 1680 x 1050 (1.60), * 1920 x 1200 (1.60). */ /* known 4:3 aspect non-standard resolution panels: * 1400 x 1050 (1.33). */ /* NOTE: * allow 0.10 difference so 1280x1024 panels will be used fullscreen! */ if ((iscale_x != (1 << 12)) && (si->ps.panel1_aspect > (dm_aspect + 0.10))) { uint16 diff; LOG(2,("CRTC: (relative) widescreen panel: tuning horizontal scaling\n")); /* X-scaling should be the same as Y-scaling */ iscale_x = iscale_y; /* enable testmode (b12) and program modified X-scaling factor */ DACW(FP_DEBUG1, (((iscale_x >> 1) & 0x00000fff) | (1 << 12))); /* center/cut-off left and right side of screen */ diff = ((si->ps.p1_timing.h_display - (target.timing.h_display * ((1 << 12) / ((float)iscale_x)))) / 2); DACW(FP_HVALID_S, diff); DACW(FP_HVALID_E, ((si->ps.p1_timing.h_display - diff) - 1)); } /* correct for portrait panels... */ /* NOTE: * allow 0.10 difference so 1280x1024 panels will be used fullscreen! */ if ((iscale_y != (1 << 12)) && (si->ps.panel1_aspect < (dm_aspect - 0.10))) { LOG(2,("CRTC: (relative) portrait panel: should tune vertical scaling\n")); /* fixme: implement if this kind of portrait panels exist on nVidia... */ } } /* do some logging.. */ LOG(2,("CRTC: FP_HVALID_S reg readback: $%08x\n", DACR(FP_HVALID_S))); LOG(2,("CRTC: FP_HVALID_E reg readback: $%08x\n", DACR(FP_HVALID_E))); LOG(2,("CRTC: FP_VVALID_S reg readback: $%08x\n", DACR(FP_VVALID_S))); LOG(2,("CRTC: FP_VVALID_E reg readback: $%08x\n", DACR(FP_VVALID_E))); LOG(2,("CRTC: FP_DEBUG0 reg readback: $%08x\n", DACR(FP_DEBUG0))); LOG(2,("CRTC: FP_DEBUG1 reg readback: $%08x\n", DACR(FP_DEBUG1))); LOG(2,("CRTC: FP_DEBUG2 reg readback: $%08x\n", DACR(FP_DEBUG2))); LOG(2,("CRTC: FP_DEBUG3 reg readback: $%08x\n", DACR(FP_DEBUG3))); LOG(2,("CRTC: FP_TG_CTRL reg readback: $%08x\n", DACR(FP_TG_CTRL))); } return B_OK; } status_t nv_crtc_depth(int mode) { uint8 viddelay = 0; uint32 genctrl = 0; /* set VCLK scaling */ switch(mode) { case BPP8: viddelay = 0x01; /* genctrl b4 & b5 reset: 'direct mode' */ genctrl = 0x00101100; break; case BPP15: viddelay = 0x02; /* genctrl b4 & b5 set: 'indirect mode' (via colorpalette) */ genctrl = 0x00100130; break; case BPP16: viddelay = 0x02; /* genctrl b4 & b5 set: 'indirect mode' (via colorpalette) */ genctrl = 0x00101130; break; case BPP24: viddelay = 0x03; /* genctrl b4 & b5 set: 'indirect mode' (via colorpalette) */ genctrl = 0x00100130; break; case BPP32: viddelay = 0x03; /* genctrl b4 & b5 set: 'indirect mode' (via colorpalette) */ genctrl = 0x00101130; break; } /* enable access to primary head */ set_crtc_owner(0); CRTCW(PIXEL, ((CRTCR(PIXEL) & 0xfc) | viddelay)); DACW(GENCTRL, genctrl); return B_OK; } status_t nv_crtc_dpms(bool display, bool h, bool v) { uint8 temp; LOG(4,("CRTC: setting DPMS: ")); /* enable access to primary head */ set_crtc_owner(0); /* start synchronous reset: required before turning screen off! */ SEQW(RESET, 0x01); /* turn screen off */ temp = SEQR(CLKMODE); if (display) { SEQW(CLKMODE, (temp & ~0x20)); /* end synchronous reset if display should be enabled */ SEQW(RESET, 0x03); //'safe mode' test! feedback needed with this 'setting'! if (0)//si->ps.tmds1_active) { /* powerup both LVDS (laptop panellink) and TMDS (DVI panellink) * internal transmitters... */ /* note: * the powerbits in this register are hardwired to the DVI connectors, * instead of to the DACs! (confirmed NV34) */ //fixme... DACW(FP_DEBUG0, (DACR(FP_DEBUG0) & 0xcfffffff)); /* ... and powerup external TMDS transmitter if it exists */ /* (confirmed OK on NV28 and NV34) */ CRTCW(0x59, (CRTCR(0x59) | 0x01)); } LOG(4,("display on, ")); } else { SEQW(CLKMODE, (temp | 0x20)); //'safe mode' test! feedback needed with this 'setting'! if (0)//si->ps.tmds1_active) { /* powerdown both LVDS (laptop panellink) and TMDS (DVI panellink) * internal transmitters... */ /* note: * the powerbits in this register are hardwired to the DVI connectors, * instead of to the DACs! (confirmed NV34) */ //fixme... DACW(FP_DEBUG0, (DACR(FP_DEBUG0) | 0x30000000)); /* ... and powerdown external TMDS transmitter if it exists */ /* (confirmed OK on NV28 and NV34) */ CRTCW(0x59, (CRTCR(0x59) & 0xfe)); } LOG(4,("display off, ")); } if (h) { CRTCW(REPAINT1, (CRTCR(REPAINT1) & 0x7f)); LOG(4,("hsync enabled, ")); } else { CRTCW(REPAINT1, (CRTCR(REPAINT1) | 0x80)); LOG(4,("hsync disabled, ")); } if (v) { CRTCW(REPAINT1, (CRTCR(REPAINT1) & 0xbf)); LOG(4,("vsync enabled\n")); } else { CRTCW(REPAINT1, (CRTCR(REPAINT1) | 0x40)); LOG(4,("vsync disabled\n")); } return B_OK; } status_t nv_crtc_dpms_fetch(bool *display, bool *h, bool *v) { /* enable access to primary head */ set_crtc_owner(0); *display = !(SEQR(CLKMODE) & 0x20); *h = !(CRTCR(REPAINT1) & 0x80); *v = !(CRTCR(REPAINT1) & 0x40); LOG(4,("CTRC: fetched DPMS state:")); if (display) LOG(4,("display on, ")); else LOG(4,("display off, ")); if (h) LOG(4,("hsync enabled, ")); else LOG(4,("hsync disabled, ")); if (v) LOG(4,("vsync enabled\n")); else LOG(4,("vsync disabled\n")); return B_OK; } status_t nv_crtc_set_display_pitch() { uint32 offset; LOG(4,("CRTC: setting card pitch (offset between lines)\n")); /* figure out offset value hardware needs */ offset = si->fbc.bytes_per_row / 8; LOG(2,("CRTC: offset register set to: $%04x\n", offset)); /* enable access to primary head */ set_crtc_owner(0); /* program the card */ CRTCW(PITCHL, (offset & 0x00ff)); CRTCW(REPAINT0, ((CRTCR(REPAINT0) & 0x1f) | ((offset & 0x0700) >> 3))); return B_OK; } status_t nv_crtc_set_display_start(uint32 startadd,uint8 bpp) { uint8 temp; uint32 timeout = 0; LOG(4,("CRTC: setting card RAM to be displayed bpp %d\n", bpp)); LOG(2,("CRTC: startadd: $%08x\n", startadd)); LOG(2,("CRTC: frameRAM: $%08x\n", si->framebuffer)); LOG(2,("CRTC: framebuffer: $%08x\n", si->fbc.frame_buffer)); /* we might have no retraces during setmode! */ /* wait 25mS max. for retrace to occur (refresh > 40Hz) */ while (((NV_REG32(NV32_RASTER) & 0x000007ff) < si->dm.timing.v_display) && (timeout < (25000/10))) { /* don't snooze much longer or retrace might get missed! */ snooze(10); timeout++; } /* enable access to primary head */ set_crtc_owner(0); if (si->ps.card_arch == NV04A) { /* upto 32Mb RAM adressing: must be used this way on pre-NV10! */ /* set standard registers */ /* (NVidia: startadress in 32bit words (b2 - b17) */ CRTCW(FBSTADDL, ((startadd & 0x000003fc) >> 2)); CRTCW(FBSTADDH, ((startadd & 0x0003fc00) >> 10)); /* set extended registers */ /* NV4 extended bits: (b18-22) */ temp = (CRTCR(REPAINT0) & 0xe0); CRTCW(REPAINT0, (temp | ((startadd & 0x007c0000) >> 18))); /* NV4 extended bits: (b23-24) */ temp = (CRTCR(HEB) & 0x9f); CRTCW(HEB, (temp | ((startadd & 0x01800000) >> 18))); } else { /* upto 4Gb RAM adressing: must be used on NV10 and later! */ /* NOTE: * While this register also exists on pre-NV10 cards, it will * wrap-around at 16Mb boundaries!! */ /* 30bit adress in 32bit words */ NV_REG32(NV32_NV10FBSTADD32) = (startadd & 0xfffffffc); } /* set NV4/NV10 byte adress: (b0 - 1) */ ATBW(HORPIXPAN, ((startadd & 0x00000003) << 1)); return B_OK; } status_t nv_crtc_cursor_init() { int i; uint32 * fb; /* cursor bitmap will be stored at the start of the framebuffer */ const uint32 curadd = 0; /* enable access to primary head */ set_crtc_owner(0); /* set cursor bitmap adress ... */ if ((si->ps.card_arch == NV04A) || (si->ps.laptop)) { /* must be used this way on pre-NV10 and on all 'Go' cards! */ /* cursorbitmap must start on 2Kbyte boundary: */ /* set adress bit11-16, and set 'no doublescan' (registerbit 1 = 0) */ CRTCW(CURCTL0, ((curadd & 0x0001f800) >> 9)); /* set adress bit17-23, and set graphics mode cursor(?) (registerbit 7 = 1) */ CRTCW(CURCTL1, (((curadd & 0x00fe0000) >> 17) | 0x80)); /* set adress bit24-31 */ CRTCW(CURCTL2, ((curadd & 0xff000000) >> 24)); } else { /* upto 4Gb RAM adressing: * can be used on NV10 and later (except for 'Go' cards)! */ /* NOTE: * This register does not exist on pre-NV10 and 'Go' cards. */ /* cursorbitmap must still start on 2Kbyte boundary: */ NV_REG32(NV32_NV10CURADD32) = (curadd & 0xfffff800); } /* set cursor colour: not needed because of direct nature of cursor bitmap. */ /*clear cursor*/ fb = (uint32 *) si->framebuffer + curadd; for (i=0;i<(2048/4);i++) { fb[i]=0; } /* select 32x32 pixel, 16bit color cursorbitmap, no doublescan */ NV_REG32(NV32_CURCONF) = 0x02000100; /* activate hardware cursor */ nv_crtc_cursor_show(); return B_OK; } status_t nv_crtc_cursor_show() { LOG(4,("CRTC: enabling cursor\n")); /* enable access to CRTC1 on dualhead cards */ set_crtc_owner(0); /* b0 = 1 enables cursor */ CRTCW(CURCTL0, (CRTCR(CURCTL0) | 0x01)); return B_OK; } status_t nv_crtc_cursor_hide() { LOG(4,("CRTC: disabling cursor\n")); /* enable access to primary head */ set_crtc_owner(0); /* b0 = 0 disables cursor */ CRTCW(CURCTL0, (CRTCR(CURCTL0) & 0xfe)); return B_OK; } /*set up cursor shape*/ status_t nv_crtc_cursor_define(uint8* andMask,uint8* xorMask) { int x, y; uint8 b; uint16 *cursor; uint16 pixel; /* get a pointer to the cursor */ cursor = (uint16*) si->framebuffer; /* draw the cursor */ /* (Nvidia cards have a RGB15 direct color cursor bitmap, bit #16 is transparancy) */ for (y = 0; y < 16; y++) { b = 0x80; for (x = 0; x < 8; x++) { /* preset transparant */ pixel = 0x0000; /* set white if requested */ if ((!(*andMask & b)) && (!(*xorMask & b))) pixel = 0xffff; /* set black if requested */ if ((!(*andMask & b)) && (*xorMask & b)) pixel = 0x8000; /* set invert if requested */ if ( (*andMask & b) && (*xorMask & b)) pixel = 0x7fff; /* place the pixel in the bitmap */ cursor[x + (y * 32)] = pixel; b >>= 1; } xorMask++; andMask++; b = 0x80; for (; x < 16; x++) { /* preset transparant */ pixel = 0x0000; /* set white if requested */ if ((!(*andMask & b)) && (!(*xorMask & b))) pixel = 0xffff; /* set black if requested */ if ((!(*andMask & b)) && (*xorMask & b)) pixel = 0x8000; /* set invert if requested */ if ( (*andMask & b) && (*xorMask & b)) pixel = 0x7fff; /* place the pixel in the bitmap */ cursor[x + (y * 32)] = pixel; b >>= 1; } xorMask++; andMask++; } return B_OK; } /* position the cursor */ status_t nv_crtc_cursor_position(uint16 x, uint16 y) { uint16 yhigh; /* make sure we are beyond the first line of the cursorbitmap being drawn during * updating the position to prevent distortions: no double buffering feature */ /* Note: * we need to return as quick as possible or some apps will exhibit lagging.. */ /* read the old cursor Y position */ yhigh = ((DACR(CURPOS) & 0x0fff0000) >> 16); /* make sure we will wait until we are below both the old and new Y position: * visible cursorbitmap drawing needs to be done at least... */ if (y > yhigh) yhigh = y; if (yhigh < (si->dm.timing.v_display - 16)) { /* we have vertical lines below old and new cursorposition to spare. So we * update the cursor postion 'mid-screen', but below that area. */ while (((uint16)(NV_REG32(NV32_RASTER) & 0x000007ff)) < (yhigh + 16)) { snooze(10); } } else { /* no room to spare, just wait for retrace (is relatively slow) */ while ((NV_REG32(NV32_RASTER) & 0x000007ff) < si->dm.timing.v_display) { /* don't snooze much longer or retrace might get missed! */ snooze(10); } } /* update cursorposition */ DACW(CURPOS, ((x & 0x0fff) | ((y & 0x0fff) << 16))); return B_OK; }