/* * Copyright 2002-2005, Axel Dörfler, axeld@pinc-software.de. * Distributed under the terms of the MIT License. * * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved. * Distributed under the terms of the NewOS License. */ #ifndef KERNEL_SMP_H #define KERNEL_SMP_H #include #include #include #include #include struct kernel_args; // intercpu messages enum { SMP_MSG_INVALIDATE_PAGE_RANGE = 0, SMP_MSG_INVALIDATE_PAGE_LIST, SMP_MSG_USER_INVALIDATE_PAGES, SMP_MSG_GLOBAL_INVALIDATE_PAGES, SMP_MSG_CPU_HALT, SMP_MSG_CALL_FUNCTION, SMP_MSG_RESCHEDULE }; enum { SMP_MSG_FLAG_ASYNC = 0x0, SMP_MSG_FLAG_SYNC = 0x1, SMP_MSG_FLAG_FREE_ARG = 0x2, }; typedef void (*smp_call_func)(addr_t data1, int32 currentCPU, addr_t data2, addr_t data3); class CPUSet { public: inline CPUSet(); inline void ClearAll(); inline void SetAll(); inline void SetBit(int32 cpu); inline void ClearBit(int32 cpu); inline void SetBitAtomic(int32 cpu); inline void ClearBitAtomic(int32 cpu); inline bool GetBit(int32 cpu) const; inline bool Matches(const CPUSet& mask) const; inline CPUSet And(const CPUSet& mask) const; inline bool IsEmpty() const; inline uint32 Bits(uint32 index) const { return fBitmap[index];} private: static const int kArrayBits = 32; static const int kArraySize = ROUNDUP(SMP_MAX_CPUS, kArrayBits) / kArrayBits; uint32 fBitmap[kArraySize]; }; #ifdef __cplusplus extern "C" { #endif bool try_acquire_spinlock(spinlock* lock); status_t smp_init(struct kernel_args *args); status_t smp_per_cpu_init(struct kernel_args *args, int32 cpu); status_t smp_init_post_generic_syscalls(void); bool smp_trap_non_boot_cpus(int32 cpu, uint32* rendezVous); void smp_wake_up_non_boot_cpus(void); void smp_cpu_rendezvous(uint32* var); void smp_send_ici(int32 targetCPU, int32 message, addr_t data, addr_t data2, addr_t data3, void *data_ptr, uint32 flags); void smp_send_multicast_ici(CPUSet& cpuMask, int32 message, addr_t data, addr_t data2, addr_t data3, void *data_ptr, uint32 flags); void smp_send_broadcast_ici(int32 message, addr_t data, addr_t data2, addr_t data3, void *data_ptr, uint32 flags); void smp_send_broadcast_ici_interrupts_disabled(int32 currentCPU, int32 message, addr_t data, addr_t data2, addr_t data3, void *data_ptr, uint32 flags); int32 smp_get_num_cpus(void); void smp_set_num_cpus(int32 numCPUs); int32 smp_get_current_cpu(void); int smp_intercpu_int_handler(int32 cpu); void call_single_cpu(uint32 targetCPU, void (*func)(void*, int), void* cookie); void call_single_cpu_sync(uint32 targetCPU, void (*func)(void*, int), void* cookie); #ifdef __cplusplus } #endif inline CPUSet::CPUSet() { memset(fBitmap, 0, sizeof(fBitmap)); } inline void CPUSet::ClearAll() { memset(fBitmap, 0, sizeof(fBitmap)); } inline void CPUSet::SetAll() { memset(fBitmap, ~uint8(0), sizeof(fBitmap)); } inline void CPUSet::SetBit(int32 cpu) { int32* element = (int32*)&fBitmap[cpu / kArrayBits]; *element |= 1u << (cpu % kArrayBits); } inline void CPUSet::ClearBit(int32 cpu) { int32* element = (int32*)&fBitmap[cpu / kArrayBits]; *element &= ~uint32(1u << (cpu % kArrayBits)); } inline void CPUSet::SetBitAtomic(int32 cpu) { int32* element = (int32*)&fBitmap[cpu / kArrayBits]; atomic_or(element, 1u << (cpu % kArrayBits)); } inline void CPUSet::ClearBitAtomic(int32 cpu) { int32* element = (int32*)&fBitmap[cpu / kArrayBits]; atomic_and(element, ~uint32(1u << (cpu % kArrayBits))); } inline bool CPUSet::GetBit(int32 cpu) const { int32* element = (int32*)&fBitmap[cpu / kArrayBits]; return ((uint32)atomic_get(element) & (1u << (cpu % kArrayBits))) != 0; } inline CPUSet CPUSet::And(const CPUSet& mask) const { CPUSet andSet; for (int i = 0; i < kArraySize; i++) andSet.fBitmap[i] = fBitmap[i] & mask.fBitmap[i]; return andSet; } inline bool CPUSet::Matches(const CPUSet& mask) const { for (int i = 0; i < kArraySize; i++) { if ((fBitmap[i] & mask.fBitmap[i]) != 0) return true; } return false; } inline bool CPUSet::IsEmpty() const { for (int i = 0; i < kArraySize; i++) { if (fBitmap[i] != 0) return false; } return true; } // Unless spinlock debug features are enabled, try to inline // {acquire,release}_spinlock(). #if !DEBUG_SPINLOCKS && !B_DEBUG_SPINLOCK_CONTENTION static inline bool try_acquire_spinlock_inline(spinlock* lock) { return atomic_get_and_set(&lock->lock, 1) == 0; } static inline void acquire_spinlock_inline(spinlock* lock) { if (try_acquire_spinlock_inline(lock)) return; acquire_spinlock(lock); } static inline void release_spinlock_inline(spinlock* lock) { atomic_set(&lock->lock, 0); } #define try_acquire_spinlock(lock) try_acquire_spinlock_inline(lock) #define acquire_spinlock(lock) acquire_spinlock_inline(lock) #define release_spinlock(lock) release_spinlock_inline(lock) static inline bool try_acquire_write_spinlock_inline(rw_spinlock* lock) { return atomic_test_and_set(&lock->lock, 1u << 31, 0) == 0; } static inline void acquire_write_spinlock_inline(rw_spinlock* lock) { if (try_acquire_write_spinlock(lock)) return; acquire_write_spinlock(lock); } static inline void release_write_spinlock_inline(rw_spinlock* lock) { atomic_set(&lock->lock, 0); } static inline bool try_acquire_read_spinlock_inline(rw_spinlock* lock) { uint32 previous = atomic_add(&lock->lock, 1); return (previous & (1u << 31)) == 0; } static inline void acquire_read_spinlock_inline(rw_spinlock* lock) { if (try_acquire_read_spinlock(lock)) return; acquire_read_spinlock(lock); } static inline void release_read_spinlock_inline(rw_spinlock* lock) { atomic_add(&lock->lock, -1); } #define try_acquire_read_spinlock(lock) try_acquire_read_spinlock_inline(lock) #define acquire_read_spinlock(lock) acquire_read_spinlock_inline(lock) #define release_read_spinlock(lock) release_read_spinlock_inline(lock) #define try_acquire_write_spinlock(lock) \ try_acquire_write_spinlock(lock) #define acquire_write_spinlock(lock) acquire_write_spinlock_inline(lock) #define release_write_spinlock(lock) release_write_spinlock_inline(lock) static inline bool try_acquire_write_seqlock_inline(seqlock* lock) { bool succeed = try_acquire_spinlock(&lock->lock); if (succeed) atomic_add((int32*)&lock->count, 1); return succeed; } static inline void acquire_write_seqlock_inline(seqlock* lock) { acquire_spinlock(&lock->lock); atomic_add((int32*)&lock->count, 1); } static inline void release_write_seqlock_inline(seqlock* lock) { atomic_add((int32*)&lock->count, 1); release_spinlock(&lock->lock); } static inline uint32 acquire_read_seqlock_inline(seqlock* lock) { return (uint32)atomic_get((int32*)&lock->count); } static inline bool release_read_seqlock_inline(seqlock* lock, uint32 count) { uint32 current = (uint32)atomic_get((int32*)&lock->count); return count % 2 == 0 && current == count; } #define try_acquire_write_seqlock(lock) try_acquire_write_seqlock_inline(lock) #define acquire_write_seqlock(lock) acquire_write_seqlock_inline(lock) #define release_write_seqlock(lock) release_write_seqlock_inline(lock) #define acquire_read_seqlock(lock) acquire_read_seqlock_inline(lock) #define release_read_seqlock(lock, count) \ release_read_seqlock_inline(lock, count) #endif // !DEBUG_SPINLOCKS && !B_DEBUG_SPINLOCK_CONTENTION #endif /* KERNEL_SMP_H */